Sel surya atau juga sering disebut fotovoltaik adalah divais yang mampu mengkonversi langsung cahaya matahari menjadi listrik. Sel surya bisa disebut sebagai pemeran utama untuk memaksimalkan potensi sangat besar energi cahaya matahari yang sampai kebumi, walaupun selain dipergunakan untuk menghasilkan listrik, energi dari matahari juga bisa dimaksimalkan energi panasnya melalui sistem solar thermal.
Sel surya dapat dianalogikan sebagai divais dengan dua terminal atau sambungan, dimana saat kondisi gelap atau tidak cukup cahaya berfungsi seperti dioda, dan saat disinari dengan cahaya matahari dapat menghasilkan tegangan. Ketika disinari, umumnya satu sel surya komersial menghasilkan tegangan dc sebesar 0,5 sampai 1 volt, dan arus short-circuit dalam skala milliampere per cm2. Besar tegangan dan arus ini tidak cukup untuk berbagai aplikasi, sehingga umumnya sejumlah sel surya disusun secara seri membentuk modul surya. Satu modul surya biasanya terdiri dari 28-36 sel surya, dan total menghasilkan tegangan dc sebesar 12 V dalam kondisi penyinaran standar (Air Mass 1.5). Modul surya tersebut bisa digabungkan secara paralel atau seri untuk memperbesar total tegangan dan arus outputnya sesuai dengan daya yang dibutuhkan untuk aplikasi tertentu. Gambar dibawah menunjukan ilustrasi dari modul surya.
Modul surya biasanya terdiri dari 28-36 sel surya yang dirangkai seri untuk memperbesar total daya output. (Gambar :”The Physics of Solar Cell”, Jenny Nelson)
Struktur dari sel surya komersial yang menggunakan material silikon sebagai semikonduktor. (Gambar:HowStuffWorks)
Struktur dari sel surya komersial yang menggunakan material silikon sebagai semikonduktor. (Gambar:HowStuffWorks)
Struktur Sel Surya
Sesuai dengan perkembangan sains&teknologi, jenis-jenis teknologi sel surya pun berkembang dengan berbagai inovasi. Ada yang disebut sel surya generasi satu, dua, tiga dan empat, dengan struktur atau bagian-bagian penyusun sel yang berbeda pula (Jenis-jenis teknologi surya akan dibahas di tulisan “Sel Surya : Jenis-jenis teknologi”). Dalam tulisan ini akan dibahas struktur dan cara kerja dari sel surya yang umum berada dipasaran saat ini yaitu sel surya berbasis material silikon yang juga secara umum mencakup struktur dan cara kerja sel surya generasi pertama (sel surya silikon) dan kedua (thin film/lapisan tipis).
Gambar diatas menunjukan ilustrasi sel surya dan juga bagian-bagiannya. Secara umum terdiri dari :
1. Substrat/Metal backing
Substrat adalah material yang menopang seluruh komponen sel surya. Material substrat juga harus mempunyai konduktifitas listrik yang baik karena juga berfungsi sebagai kontak terminal positif sel surya, sehinga umumnya digunakan material metal atau logam seperti aluminium atau molybdenum. Untuk sel surya dye-sensitized (DSSC) dan sel surya organik, substrat juga berfungsi sebagai tempat masuknya cahaya sehingga material yang digunakan yaitu material yang konduktif tapi juga transparan sepertii ndium tin oxide (ITO) dan flourine doped tin oxide (FTO).
2. Material semikonduktor
Material semikonduktor merupakan bagian inti dari sel surya yang biasanya mempunyai tebal sampai beberapa ratus mikrometer untuk sel surya generasi pertama (silikon), dan 1-3 mikrometer untuk sel surya lapisan tipis. Material semikonduktor inilah yang berfungsi menyerap cahaya dari sinar matahari. Untuk kasus gambar diatas, semikonduktor yang digunakan adalah material silikon, yang umum diaplikasikan di industri elektronik. Sedangkan untuk sel surya lapisan tipis, material semikonduktor yang umum digunakan dan telah masuk pasaran yaitu contohnya material Cu(In,Ga)(S,Se)2 (CIGS), CdTe (kadmium telluride), dan amorphous silikon, disamping material-material semikonduktor potensial lain yang dalam sedang dalam penelitian intensif seperti Cu2ZnSn(S,Se)4 (CZTS) dan Cu2O (copper oxide).
Bagian semikonduktor tersebut terdiri dari junction atau gabungan dari dua material semikonduktor yaitu semikonduktor tipe-p (material-material yang disebutkan diatas) dan tipe-n (silikon tipe-n, CdS,dll) yang membentuk p-n junction. P-n junction ini menjadi kunci dari prinsip kerja sel surya. Pengertian semikonduktor tipe-p, tipe-n, dan juga prinsip p-n junction dan sel surya akan dibahas dibagian “cara kerja sel surya”.
3. Kontak metal / contact grid
Selain substrat sebagai kontak positif, diatas sebagian material semikonduktor biasanya dilapiskan material metal atau material konduktif transparan sebagai kontak negatif.
4.Lapisan antireflektif
Refleksi cahaya harus diminimalisir agar mengoptimalkan cahaya yang terserap oleh semikonduktor. Oleh karena itu biasanya sel surya dilapisi oleh lapisan anti-refleksi. Material anti-refleksi ini adalah lapisan tipis material dengan besar indeks refraktif optik antara semikonduktor dan udara yang menyebabkan cahaya dibelokkan ke arah semikonduktor sehingga meminimumkan cahaya yang dipantulkan kembali.
5.Enkapsulasi / cover glass
Bagian ini berfungsi sebagai enkapsulasi untuk melindungi modul surya dari hujan atau kotoran.
Cara kerja sel surya
Sel surya konvensional bekerja menggunakan prinsip p-n junction, yaitu junction antara semikonduktor tipe-p dan tipe-n. Semikonduktor ini terdiri dari ikatan-ikatan atom yang dimana terdapat elektron sebagai penyusun dasar. Semikonduktor tipe-n mempunyai kelebihan elektron (muatan negatif) sedangkan semikonduktor tipe-p mempunyai kelebihan hole (muatan positif) dalam struktur atomnya. Kondisi kelebihan elektron dan hole tersebut bisa terjadi dengan mendoping material dengan atom dopant. Sebagai contoh untuk mendapatkan material silikon tipe-p, silikon didoping oleh atom boron, sedangkan untuk mendapatkan material silikon tipe-n, silikon didoping oleh atom fosfor. Ilustrasi dibawah menggambarkan junction semikonduktor tipe-p dan tipe-n.
Junction antara semikonduktor tipe-p (kelebihan hole) dan tipe-n (kelebihan elektron). (Gambar : eere.energy.gov)
Peran dari p-n junction ini adalah untuk membentuk medan listrik sehingga elektron (dan hole) bisa diekstrak oleh material kontak untuk menghasilkan listrik. Ketika semikonduktor tipe-p dan tipe-n terkontak, maka kelebihan elektron akan bergerak dari semikonduktor tipe-n ke tipe-p sehingga membentuk kutub positif pada semikonduktor tipe-n, dan sebaliknya kutub negatif pada semikonduktor tipe-p. Akibat dari aliran elektron dan hole ini maka terbentuk medan listrik yang mana ketika cahaya matahari mengenai susuna p-n junction ini maka akan mendorong elektron bergerak dari semikonduktor menuju kontak negatif, yang selanjutnya dimanfaatkan sebagai listrik, dan sebaliknya hole bergerak menuju kontak positif menunggu elektron datang, seperti diilustrasikan pada gambar dibawah.
Ilustrasi cara kerja sel surya dengan prinsip p-n junction. (Gambar : sun-nrg.org)
Sel surya terbuat dari bahan yang mudah pecah dan berkarat jika terkena air. Karena itu sel ini dibuat dalam bentuk panel-panel ukuran tertentu yang dilapisi plastic atau kaca bening yang kedap air. Panel ini dikenal sebagai panel surya.
Ada beberapa jenis panel surya yang dijual dipasaran :
Jenis pertama, yaitu jenis yang terbaik dan yang terbanyak digunakan masyarakat saat ini, adalah jenis monokristalin. Panel ini memiliki tingkat efisiensi antara 12 sampai 14%.
Jenis kedua adalah jenis polikristalin atau multi kristalin, yang terbuat dari kristal silikon dengan tingkat efisiensi antara 10 sampai 12%.
Jenis kedua adalah jenis polikristalin atau multi kristalin, yang terbuat dari kristal silikon dengan tingkat efisiensi antara 10 sampai 12%.
Jenis ketiga adalah silikon jenis amorphous, yang berbentuk film tipis. Efisiensinya sekitar 4-6%. Panel surya jenis ini banyak dipakai di mainan anak-anak, jam dan kalkulator.
Jenis keempat adalah panel surya yang terbuat dari GaAs (Gallium Arsenide) yang lebih efisien pada temperatur tinggi.
Jenis keempat adalah panel surya yang terbuat dari GaAs (Gallium Arsenide) yang lebih efisien pada temperatur tinggi.
Listrik yang dihasilkan oleh panel surya dapat langsung digunakan atau disimpan lebih dahulu ke dalam baterei kering. Arus listrik yang dihasilkan adalah listrik dengan arus searah (DC) sebesar 3.5 A. Besar tegangan yang dihasilkan adalah 0.4-0.5V. Kita dapat mendesain rangkaian panel-panel surya, secara seri atau paralel, untuk memperoleh output tegangan dan arus yang diinginkan. Untuk memperoleh arus bolak balik (AC) diperlukan alat tambahan yang disebut inverter.
Perhitungan Teknis :
Daya yang dihasilkan oleh panel surya maksimum diukur dengan besaran Wattpeak (Wp), yang konversinya terhadap Watthour (Wh) tergantung intensitas cahaya matahari yang mengenai permukaan panel. Selanjutnya daya yang dikeluarkan oleh panel surya adalah daya panel dikalikan lama penyinaran.
Misalnya sebuah panel surya berkapasitas 50 Wp disinari matahari dengan intensitas maksimum selama 8 jam maka daya yang dihasilkan adalah 50 kali 8 Wh atau 400 Wh. Daya sebanyak ini dapat digunakan untuk menyalakan 4 buah lampu 25 Watt selama 4 jam atau sebuah televisi hitam putih 40 Watt selama 10 jam.
Di Indonesia, daya (Wh) yang dihasilkan perhari biasanya sekitar 3-5 kali daya panel maksimum (Wp), 3 kali untuk cuaca mendung, dan 5 kali untuk kondisi panas terik. Misalnya untuk sebuah panel surya berdaya maksimum 50 Wp, daya yang dihasilkan pada cuaca mendung perhari adalah 3 kali 50 Wp atau 150 Wp, dan pada cuaca cerah adalah 5 kali 50 Wp atau 250 Wp.
Panel-panel surya dapat disusun secara seri atau paralel. Rangkaian paralel digunakan pada panel panel dengan tegangan output yang sama untuk memperoleh penjumlahan arus keluaran. Tegangan yang lebih tinggi diperoleh dengan merangkai panel-panel dengan arus keluaran yang sama secara seri. Misalnya untuk memperoleh keluaran sebesar 12 Volt dan arus 12 A, kita dapat merangkai 4 buah panel masing-masing dengan keluaran 12 Volt dan 3 A secara paralel. Sementara kalau keempat panel tersebut dirangkai secara seri akan diperoleh keluaran tegangan sebesar 48 Volt dan arus 3 A.
No comments:
Post a Comment